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1 Introduction

In this note, I derive the marginal and conditional distributions of multivariate
gaussians. This derivation requires knowledge of the Woodbury Formula and
block-wise matrix inversion. The linear algebra can get rather complicated, but
the essence of the derivation comes down to breaking down the joint distribu-
tion of the multivariate gaussian into the product of two multivariate normal
distributions, one of which should be in terms of only one of the two subvectors
that form the Jointly Gaussian Random Vector (i.e. Equation 17).

2 Lemma for Derivation

Let A be a symmetric matrix that can be expressed as

A =

[
A11 A12

A21 A22

]
such that A11 and A22 are invertible square matrices.

Lemma 1 (Determinant of block symmetric matrix). Following the assumption
above,

|A| = |A11||A22 −A21A
−1
11 A12| = |A22||A11 −A12A

−1
22 A21|

Proof. Via matrix multiplication, we can see that

A =

[
A11 0
A21 I

] [
I A−1

11 A12

0 A22 −A21A
−1
11 A12

]
=

[
I A12

0 A22

] [
A11 −A12A

−1
22 A21 0

A−1
22 A21 I

]
Since |AB| = |A||B| and the determinant of a triangular matrix is the product
of the determinants of its two diagonal blocks, we have proved the lemma.
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3 Derivation of Marginal and Conditional Dis-
tributions of Multivariate Gaussian

Let X be an n-dimensional Jointly Gaussian (JG) Random Vector such that

X =

[
X1

X2

]
∼N(µ,Σ) (1)

where

µ =

[
µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

X1 is a n1-dimensional JG Random Vector and X2 is a n2-dimensional JG
Random Vector such that n1 + n2 = n.

Theorem 2 (Marginal Distribution of Multivariate Gaussian).

X1 ∼N(µ1,Σ11) (2)

X2 ∼N(µ2,Σ22) (3)

Theorem 3 (Conditional Distribution of Multivariate Gaussian).

X1|X2 ∼N(µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 − Σ12Σ−1

22 Σ21) (4)

X2|X1 ∼N(µ2 + Σ21Σ−1
11 (X1 − µ1),Σ22 − Σ21Σ−1

11 Σ12) (5)

Note that since Σ is symmetric, Σ12 = ΣT21.

Proof. The joint density of X is:

fX(x) = fX1,X2
(x1, x2) =

1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)T Σ−1(x−µ) (6)

We can break down the exponential term further:

(X − µ)TΣ−1(X − µ) =
[
X1 − µ1 X2 − µ2

] [Σ∗11 Σ∗12

Σ∗21 Σ∗22

] [
X1 − µ1

X2 − µ2

]
= (X1 − µ1)TΣ∗11(X1 − µ1)

+ 2(X1 − µ1)TΣ∗12(X2 − µ2)

+ (X2 − µ2)TΣ∗22(X2 − µ2)

(7)

such that

Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
Σ∗11 Σ∗12

Σ∗21 Σ∗22

]
(8)

Applying block matrix inverse and Woodbury Formula, we find that:

Σ∗11 = (Σ11 − Σ12Σ−1
22 Σ21)−1

= Σ−1
11 + Σ−1

11 Σ12(Σ22 − Σ21Σ−1
11 Σ12)−1Σ21Σ−1

11

(9)
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Σ∗22 = (Σ22 − Σ21Σ−1
11 Σ12)−1

= Σ−1
22 + Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)−1Σ12Σ−1

22

(10)

Σ∗12 = −Σ−1
11 Σ12(Σ22 − Σ21Σ−1

11 Σ12)−1 = (Σ∗21)T (11)

For the last equation, Σ∗12 = (Σ∗21)T because applying block matrix inverse for
the (Σ∗21)T term of (ΣT )−1 will result in the same expression as the block matrix
inverse for the Σ∗12 term of (Σ)−1. Since ΣT = Σ, Σ∗12 = (Σ∗21)T .

Let A := Σ22 − Σ21Σ−1
11 Σ12. Plugging in our derived values for Σ∗11, Σ∗12, and

Σ∗22 into equation 7, we have:

(X − µ)TΣ−1(X − µ) = (X1 − µ1)T (Σ−1
11 + Σ−1

11 Σ12A
−1Σ21Σ−1

11 )(X1 − µ1)

− 2(X1 − µ1)T (Σ−1
11 Σ12A

−1)(X2 − µ2)

+ (X2 − µ2)T (A−1)(X2 − µ2)

= (X1 − µ1)TΣ−1
11 (X1 − µ1)

+ (X1 − µ1)TΣ−1
11 Σ12A

−1Σ21Σ−1
11 (X1 − µ1)

− 2(X1 − µ1)T (Σ−1
11 Σ12A

−1)(X2 − µ2)

+ (X2 − µ2)T (A−1)(X2 − µ2)
(12)

We want to simplify equation 12 further. Note that the latter 3 terms of equation
12 all have common components. Let uT = (X1 − µ1)TΣ−1

11 Σ12, M = A−1, and
v = X2 − µ2. Then the latter 3 terms of equation 12 break down as such:

(X1 − µ1)TΣ−1
11 Σ12A

−1Σ21Σ−1
11 (X1 − µ1)

− 2(X1 − µ1)T (Σ−1
11 Σ12A

−1)(X2 − µ2) + (X2 − µ2)T (A−1)(X2 − µ2)

= uTMu− 2uTMv + vTMv

= uTMu− uTMv − uTMv + vTMv

= uTM(u− v)− (u− v)TMv

= uTM(u− v)− vTM(u− v)

= (u− v)TM(u− v)

= (v − u)TM(v − u)

= ((X2 − µ2)− Σ21Σ−1
11 (X1 − µ1))TA−1((X2 − µ2)− Σ21Σ−1

11 (X1 − µ1))
(13)

Plugging in what we got in equation 13 back into equation 12, we get

(X − µ)TΣ−1(X − µ) = (X1 − µ1)TΣ−1
11 (X1 − µ1)

+ ((X2 − µ2)− Σ21Σ−1
11 (X1 − µ1))T

A−1((X2 − µ2)− Σ21Σ−1
11 (X1 − µ1))

(14)
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Let b := µ2 + Σ21Σ−1
11 (X1 − µ1), then

(X − µ)TΣ−1(X − µ) = (X1 − µ1)TΣ−1
11 (X1 − µ1)

+ (X2 − b)TA−1(X2 − b)
(15)

For clarity, let us define{
g1(X1) := (X1 − µ1)TΣ−1

11 (X1 − µ1)

g2(X1, X2) := (X2 − b)TA−1(X2 − b)
(16)

Then, the joint density of X can be broken down as such:

fX(x) = fX1,X2
(x1, x2)

=
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)T Σ−1(x−µ)

=
1

(2π)n/2|Σ|1/2
e−

1
2 (g1(x1)+g2(x1,x2))

=
1

(2π)n/2|Σ11|1/2|A|1/2
e−

1
2 (g1(x1)+g2(x1,x2))

=
1

(2π)n1/2|Σ11|1/2
e−

1
2 g1(x1) 1

(2π)n2/2|A|1/2
e−

1
2 g2(x1,x2)

=
1

(2π)n1/2|Σ11|1/2
e−

1
2 (x1−µ1)T Σ−1

11 (x1−µ1)

1

(2π)n2/2|A|1/2
e−

1
2 (x2−b)TA−1(x2−b)

X ∼N(µ1,Σ11)N(b, A)

(17)

In the fourth line, |Σ| = |Σ11||A| is a direct consequence of lemma 1.

The marginal distribution of X1 is

fX1
(x1) =

∫
fX1,X2

(x1, x2)dx2

=
1

(2π)n1/2|Σ11|1/2
e−

1
2 (x1−µ1)T Σ−1

11 (x1−µ1)∫
1

(2π)n2/2|A|1/2
e−

1
2 (x2−b)TA−1(x2−b)dx2

=
1

(2π)n1/2|Σ11|1/2
e−

1
2 (x1−µ1)T Σ−1

11 (x1−µ1)

X1 ∼N(µ1,Σ11)

(18)
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The conditional distribution of X2|X1 is

fX2|X1
(x2|x1) =

fX1,X2
(x1, x2)

fX1
(x1)

=
1

(2π)n2/2|A|1/2
e−

1
2 (x2−b)TA−1(x2−b)

X2|X1 ∼N(b, A)

∼N(µ2 + Σ21Σ−1
11 (X1 − µ1),Σ22 − Σ21Σ−1

11 Σ12)

(19)

The marginal distribution of X2 and conditional distribution of X1|X2 can be
derived by writing equation 12 in terms of (Σ11 − Σ12Σ−1

22 Σ21)−1 instead of
(Σ22 − Σ21Σ−1

11 Σ12)−1 and following the same derivation procedure.
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