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1 Introduction

In this note, I derive the marginal and conditional distributions of multivariate
gaussians. This derivation requires knowledge of the Woodbury Formula and
block-wise matrix inversion. The linear algebra can get rather complicated, but
the essence of the derivation comes down to breaking down the joint distribu-
tion of the multivariate gaussian into the product of two multivariate normal
distributions, one of which should be in terms of only one of the two subvectors
that form the Jointly Gaussian Random Vector (i.e. Equation 17).

2 Lemma for Derivation

Let A be a symmetric matrix that can be expressed as
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such that A1 and Ags are invertible square matrices.

Lemma 1 (Determinant of block symmetric matrix). Following the assumption
above,

|A| = |A11]||Age — Ao AT Arg| = |Agg|| A1 — A2 Ay Aoy |
Proof. Via matrix multiplication, we can see that

A= All 0 I A1_11A12 i I A12 All—AlgAz_QlAgl 0
Asr I| |0 A22—A21Af11A12 0 Aa A§21A21 I

Since |AB| = |A||B| and the determinant of a triangular matrix is the product
of the determinants of its two diagonal blocks, we have proved the lemma. [



3 Derivation of Marginal and Conditional Dis-
tributions of Multivariate Gaussian

Let X be an n-dimensional Jointly Gaussian (JG) Random Vector such that

x =[]~ Vi) 1)

where
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X1 is a nj-dimensional JG Random Vector and Xs is a nog-dimensional JG
Random Vector such that ny + ny = n.

Theorem 2 (Marginal Distribution of Multivariate Gaussian).
X1~ N(p1,211) (2)
X ~ N(u2,X22) (3)
Theorem 3 (Conditional Distribution of Multivariate Gaussian).
X1| Xz ~ N(pn + 12855 (Xo — p12), B11 — S12%55 Ta1) (4)
Xo| X1 ~ N(pz + Zo1 217 (X1 — 1), B22 — o1 By Taa) (5)
Note that since ¥ is symmetric, ¥, = %71,

Proof. The joint density of X is:
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We can break down the exponential term further:
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such that
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Applying block matrix inverse and Woodbury Formula, we find that:
i = (Cnn — DXy Ba1) 7
= E1_11 + Z1_11212(222 - 22121_11212)7122121_11



S5y = (S22 — S 811 012)

_ _ _ _ _ (10)
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For the last equation, ¥}, = (X3;)7 because applying block matrix inverse for
the (X5;)7 term of (X7)~! will result in the same expression as the block matrix
inverse for the X%, term of (X)~1. Since X7 =¥, %7, = (X5,)7T.

Let A := X9y — 2212;11212. Plugging in our derived values for ¥7;, X7,, and
Y5, into equation 7, we have:

(X =" N X —p) = (X1 — )T (51 + S5 21247 80 51 (X1 — )
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+ (X1 — ) T2 B AT S B (X — )
= 2(X1 — )" (B T AT ) (X2 — p2)
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(12)
We want to simplify equation 12 further. Note that the latter 3 terms of equation
12 all have common components. Let u? = (X; — ,ul)TEﬁlZlg, M= A""' and
v = Xo — po. Then the latter 3 terms of equation 12 break down as such:
(X1 — 1) S S12 A7 S B (X7 — 1)
= 2(X1 — )T (B BieAT ) (X2 — p2) + (X2 — p2) T (A™H)(X2 — p2)
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= (X2 — p2) = Toa 377 (X1 — 1)) TATH (X — p2) — Sn B (X — Ml))l
Plugging in what we got in equation 13 back into equation 12, we get "
(X = )" X = p) = (X1 — ) "S5 (X0 — )
+ (X2 = p2) = Zn 277 (X1 — )" (14)
ATH(X2 = p2) = Zoa By (X1 — )



Let b:= po + ZglEfll(Xl — p1), then

(X =" X =) = (X1 — ) "S5 (X0 — )
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For clarity, let us define
gl(Xl) = (Xl - /’Ll)Tzl_ll(Xl - Ml) (16)
gg(Xl,Xg) = (X2 — b)TAil(XQ — b)
Then, the joint density of X can be broken down as such:
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In the fourth line, |X| = |X11]|4] is a direct consequence of lemma 1.
The marginal distribution of X is
o) = [ fx (o aa)dos
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The conditional distribution of X5|X; is

]CXQ\X1 ($2|1’1) = W
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G e (19)
Xo| X1 ~ N(b, A)

~ N(pg +Z1 27 (X1 — 1), B2 — T 2711 210)

The marginal distribution of X5 and conditional distribution of X;]|X5 can be
derived by writing equation 12 in terms of (X1; — 2122521221)’1 instead of
(X9 — 2212f11212)_1 and following the same derivation procedure. O



